⁶⁷Zn NMR Spectral Studies of Aqueous Zn²⁺ and Zn²⁺-Insulin Complexes

TORU SHIMIZU and MASAHIRO HATANO

Chemical Research Institute of Non-Aqueous Solutions, Tohoku University, Katahira, Sendai 980, Japan

Received October 15, 1982

Following our qualitative 67 Zn NMR studies on Zn²⁺-biological molecule complexes [1], we present here the first quantitative studies on correlation time to interpret 67 Zn NMR spectra of the *naturally abundant* Zn²⁺-insulin complex.

Typical ⁶⁷Zn NMR spectra are shown in Fig. 1. An aqueous solution of ZnCl₂ (2 M), pH 4.0, has a very broad ⁶⁷Zn NMR resonance having a half-band width $(\Delta \nu_{1/2})$ of 170 Hz. By decreasing pH to 0.50 the $\Delta \nu_{1/2}$ of ZnCl₂ (2 *M*) was reduced to 128 Hz, still much larger than those (<10 Hz) of ${}^{25}Mg$ NMR of 2 M Mg²⁺ [2] and ${}^{43}Ca$ NMR of 2 M Ca²⁺ [3]. Dilution of the $ZnCl_2$ solution to 50 mM led to a narrower ⁶⁷Zn NMR resonance with $\Delta v_{1/2}$ of 12 Hz. By adding nearly 1 mM bovine insulin (Sigma, 25.5 international units per mg protein) to the 50 mM Zn²⁺ solution, pH 2.95, the $\Delta \nu_{1/2}$ of ⁶⁷Zn NMR increased three-fold. The pH of the solution was very crucial for observing the resonance of the Zn²⁺-insulin complex in that the ⁶⁷Zn NMR resonance at pH 3.5 or more was very hard to be observed for the Zn^{2+} -insulin complex, even after 2×10^5 transients. Addition of more than 1 mM insulin to the 50 mM Zn^{2+} solution also made the ^{67}Zn NMR spectrum very obscure, due to the pronounced broadening of the resonance. The longitudinal relaxation times, T_1 , of the ZnCl₂ and the Zn²⁺-insulin complex were first measured. T₁ values obtained by the inversion recovery method $(180^{\circ} - \tau - 90^{\circ})$ pulse sequences) and T_2 values estimated by the relation $T_2 = 1/\pi \Delta v_{1/2}$ are summarized in Table I. The

Fig. 1. 67 Zn NMR spectra of (A) ZnCl₂ (2 *M*), pH 0.50; (B) ZnCl₂ (50 mM), pH 3.00; (C) ZnCl₂ (50 mM)-Insulin (0.99 mM), pH 2.95.

determined T_1 value of the 2 M ZnCl₂ solution is almost the same as the T_2 value, suggesting that the extreme narrowing case can be applicable to this system and that the nucleus is isotropically tumbling. The same is true for the diluted ZnCl₂ solution. For the extreme narrowing case, the quadrupolar relaxation can be written as [4]:

$$1/T_{1q} = 1/T_{2q} = \frac{3\pi^2(2I+3)}{10I^2(2I-1)} \left(1 + \frac{\eta}{3}\right)\chi^2 \tau_c$$
(1)

When it is assumed that the asymmetry parameter (η) is less than 0.5 and that the quadrupole coupling constant (χ) is 1 MHz [4], the correlation time (τ_e) describing an isotropic tumbling motion of the

Species	$\Delta v_{1/2}/\mathrm{Hz}$	T ₂ /ms	T ₁ /ms	T_{1}/T_{2}
ZnCl ₂ (2 <i>M</i>), pH 0.50	128	2.49	2.50	1.00
ZnCl ₂ (50 mM), pH 3.00	12	26.54	28.10	1.06
Zn ²⁺ (50 mM)-Insulin (0.99 mM), pH 2.95	38	8.34	11.47	1.37
Zn ²⁺ (50 mM)–Insulin (0.95 mM), pH 2.84	30.5	10.40	14.13	1.36

TABLE I. ⁶⁷Zn NMR Spectra of ZnCl₂ and Zn²⁺-Insulin Complexes.

0020-1693/83/0000-0000/\$03.00

© Elsevier Sequoia/Printed in Switzerland

nucleus of the 50 mM ZnCl₂ solution is estimated from eqn. (1) to be 0.068 (±0.002) ns. This τ_{e} value of the 50 mM $ZnCl_2$ solution is much larger than those of other nuclei, which are usually in the range $1 \sim 10$ ps for non-viscous liquids [4]. $\tau_{\rm c}$ of the 2 $M \operatorname{ZnCl}_2$ solution is estimated to be 0.76 (±0.02) ns under the same assumptions. The relatively large τ_{e} values of the aqueous Zn²⁺ nuclei and the difference of T_1 or T_2 values between the 2 M and 50 mM solution may be ascribed to the aggregated structures of Zn^{2+} ions. Observing the resonance of aqueous Zn^{2+} is practically unfeasible, even at pH 5.0. Precipitates are easily formed, even at pH 6.3 [1]. Those findings also suggest that aqueous Zn²⁺ has a tendency to form the aggregated structure. The aggregation of Zn²⁺ would influence the symmetry around the nucleus relating to the quadrupole coupling constant, and/or the correlation time of the nucleus.

The extreme narrowing case cannot be applied to the 67 Zn NMR of the Zn²⁺-insulin complex since T₁/T₂ is not unity [4, 6, 7]. By considering that two Zn²⁺ are bound to an insulin hexamer [5] and that 0.5% Zn is contained in the purchased bovine insulin, T₁ and T₂ for the Zn²⁺-insulin complex (2:6 in molar ratio) are estimated to be 126 μ s and 79.9 μ s respectively. According to the fast exchange two-state model [6, 7], T₁ and T₂ are described even in nonextreme narrowing case as follows:

$$1/T_{1} = \frac{3\pi^{2}}{10} \chi^{2} \frac{2I+3}{I^{2}(2I-1)} \left[\frac{0.2\tau_{c}}{1+(\omega\tau_{c})^{2}} + \frac{0.8\tau_{c}}{1+(2\omega\tau_{c})^{2}} \right]$$
(2)

$$1/T_{2} = \frac{3\pi^{2}}{10} \chi^{2} \frac{2I+3}{I^{2}(2I-1)} \times \left[0.3\tau_{c} + \frac{0.5\tau_{c}}{1+(\omega\tau_{c})^{2}} + \frac{0.2\tau_{c}}{1+(2\omega\tau_{c})^{2}} \right]$$
(3)

These equations are good for I = 5/2 nuclei as 67 Zn, as well as for I = 7/2 nuclei such as 43 Ca. The T₁/T₂ value gives $\omega \tau_c$ (τ_c is the correlation time describing the reorientation of the electric field gradients at the nucleus) to be nearly 0.6 according to Andersson *et al.* [7],from which τ_c and the quadrupole coupling constant (χ) are evaluated to be 5.1 (±0.2) ns and 1.86 (±0.05) MHz respectively. The τ_c value of 67 Zn in the Zn²⁺-insulin complex is close to that of Ca²⁺ in Ca²⁺-binding proteins [7]. The quadrupole coupling constant, 1.86 (±0.05) MHz, is relatively large compared with that of Ca²⁺ in Ca²⁺-binding proteins [7] and to those of isotropically tumbling quadrupolar nuclei [4]. From these findings it is suggested that the reorientation of 67 Zn in the Zn²⁺-insulin complex is fairly fast and that an environment around Zn^{2+} in insulin at acidic pH is not very symmetric. Protonation of Zn^{2+} -bound imidazole may reduce the symmetry of Zn^{2+} .

We first offered macroscopic quantitative information on the ⁶⁷Zn nucleus of aqueous Zn^{2+} and the Zn^{2+} -insulin complex by ⁶⁷Zn NMR spectroscopy. Since the significance of Zn^{2+} in biological structurefunction relationships has been noted, the application of ⁶⁷Zn NMR spectra to the biological system is promising.

Experimental

⁶⁷Zn NMR spectra were accumulated on a Bruker CXP-300 FT NMR spectrometer at 18.774 MHz in a spinning 10 mm sample tube with external D₂O for the frequency lock. A transmitter provided 90degree pulse widths of 80 μs for the nucleus at a peak-to-peak voltage of 300 V. Typical spectra consisted of 40000 transients to obtain signal/noise > 6 using 2 k or 4 k data points over 5000 Hz sweep widths in quadrature detection model [1]. The signal/noise ratio was improved by exponential multiplication which introduced 2 ~ 8 Hz line broadenings. The acquisition time was 2 s for the ZnCl₂ solution and 250 ms for the Zn²⁺-insulin solution. Temperature was kept at 298 ± 0.5 K.

Acknowledgments

This research was supported in part by a grant from Nissan Science Foundation to M. H. and by Grant-in-Aid from the Ministry of Education, Science and Culture of Japan.

References

- 1 T. Shimizu and M. Hatano, Biochem. Biophys. Res. Commun., 104, 1356 (1982);
- T. Shimizu, M. Kodaka and M. Hatano, *ibid.*, 106, 988 (1982).
- 2 T. Shimizu and M. Hatano, Biochem. Biophys. Res. Commun., 104, 720 (1982).
- 3 O. Lutz, A. Schwenk and A. Uhl, Z. Naturforsch., 30a, 1122 (1982).
- 4 K. Harris and B. E. Mann, eds., "NMR and the Periodic Table", Academic Press, London (1978).
- 5 J. H. Bradbury, V. Ramesh and G. Dodson, J. Mol. Biol., 150, 609 (1981).
- 6 B. Halle and H. Wennerström, J. Mag. Res., 44, 89 (1981).
- 7 T. Andersson, T. Drankenberg, S. Forsén, E. Thulin and M. Swärd, J. Am. Chem. Soc., 104, 576 (1982).